High Energy Astrophysics ## **Solutions to Questions 1-4** 1. The relationship between energy and wavelength is $$\varepsilon = \frac{hc}{\lambda} = \frac{6.62 \times 10^{-34} \times 3.0 \times 10^{8}}{1.60 \times 10^{-19} \times \left(\frac{\lambda}{m}\right)} = 1.24 \times 10^{-6} \left(\frac{\lambda}{m}\right)^{-1} \text{ eV}$$ Also, to determine frequency and wavelength given energy, use $$\varepsilon = hv \Rightarrow v = \frac{\varepsilon}{h} = \frac{1.60 \times 10^{-19}}{6.62 \times 10^{-34}} \times \left(\frac{\varepsilon}{\text{eV}}\right) = 2.41 \times 10^{14} \left(\frac{\varepsilon}{\text{eV}}\right) \text{ Hz}$$ $$\varepsilon = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{\varepsilon} = 1.24 \times 10^{-6} \left(\frac{\varepsilon}{\text{eV}}\right)^{-1} \text{ m} = 1.24 \times 10^{4} \left(\frac{\varepsilon}{\text{eV}}\right)^{-1} \text{ Angstroms}$$ Hence the following table (the primary quantity is given in bold): | Photon | v
(Hz) | λ
(Angstroms) | λ
(metres) | ε
(eV) | |-----------------------|-----------------------|-----------------------|----------------------------------|-----------------------| | Typical microwave | | | 0.20 | 6.2×10 ⁻⁶ | | Typical far infrared | | | 100×10^{-6} = 10^{-4} | 1.24×10 ⁻² | | Typical near infrared | | | 2 ×10 ⁻⁶ | 0.62 | | Typical optical | | 5000 | 5×10 ⁻⁷ | 2.48 | | Typical UV | | 1000 | 10^{-7} | 12.4 | | Soft X-ray | 2.41×10 ¹⁷ | 12.4 | 1.24×10 ⁻⁹ | 1 keV | | Hard X-ray | 2.41×10 ¹⁹ | 0.124 | 1.24×10 ⁻¹¹ | 100 keV | | TeV γ-ray | 2.41×10^{26} | 1.24×10 ⁻⁸ | 1.24×10^{-18} | 1TeV | 2. The flux density received at point P is: $$\begin{split} F_{v} &= \int_{\Omega} I_{v} \cos \theta d\Omega = \int_{\theta, \phi} I_{v} \cos \theta \sin \theta d\theta d\phi \\ &= 2\pi I_{v} \int_{0}^{\theta_{c}} \cos \theta \sin \theta d\theta = \pi I_{v} \sin^{2} \theta_{c} \\ &= \pi I_{v} \frac{R^{2}}{r^{2}} \end{split}$$ That is, we recover the inverse square law. 3. First calculate the solid angle of rays hitting the back of the camera. Viewed from the point P the aperture appears as an ellipse with major and minor axes d and $d\cos\theta$. The area of the aperture is therefore $$\Delta A \approx \frac{\pi}{4} d\cos\theta \times d = \frac{\pi}{4} d^2 \cos\theta$$ Hence the (small) solid angle subtended by the aperture at P is $$\Delta\Omega = \frac{\frac{\pi}{4}d^2\cos\theta}{(L\sec\theta)^2} = \frac{\pi}{4}\frac{d^2}{L^2}\cos^3\theta$$ Next, the flux density incident on the back of the camera at P is $$F_{v} = \int_{\Omega} I_{v} \cos \theta d\Omega \approx I_{v} \cos \theta \Delta\Omega = I_{v} \frac{\pi d^{2}}{4L^{2}} \cos^{4}\theta = I_{v} \frac{\pi d^{2}}{f^{2}}$$ where the focal ratio f = L/d. 4. (a) The mean intensity at a particular point, a radius r from the centre of the sphere is: $$J_{v} = \frac{1}{4\pi} \int_{\Omega} I_{v} d\Omega = \frac{1}{2} \int_{0}^{\theta_{c}} I_{v} \sin\theta d\theta = \frac{1}{2} I_{v} [1 - \cos\theta_{c}] = \frac{1}{2} I_{v} \left[1 - \left(1 - \frac{R^{2}}{r^{2}} \right)^{1/2} \right]$$ (b) Flux through the surface of the sphere is: $$F_{v} = \int_{0}^{2\pi} \left\{ \int_{0}^{\pi} I_{v} \cos \theta \sin \theta d\theta \right\} d\phi = \pi I_{v}$$ Hence, the total energy per unit time through the surface of the sphere (i.e. the Luminosity) is: $$L_{v} = F_{v} \times 4\pi R^{2} = 4\pi^{2}I_{v}R^{2}$$ Therefore, $$I_{\rm v} = \frac{L_{\rm v}}{4\pi^2 R^2}$$ (c) The energy density per unit frequency is $$\begin{split} u_{v} &= \frac{4\pi}{c} J_{v} = \frac{4\pi}{c} \times \frac{1}{2} I_{v} \bigg[1 - \bigg(1 - \frac{R^{2}}{r^{2}} \bigg)^{1/2} \bigg] \\ &= \frac{L_{v}}{2\pi c R^{2}} \bigg[1 - \bigg(1 - \frac{R^{2}}{r^{2}} \bigg)^{1/2} \bigg] \\ &\approx \frac{L_{v}}{4\pi c R^{2}} \end{split}$$ Hence, the total (i.e. frequency integrated) energy density is $$u \approx \frac{L}{4\pi c R^2}$$ (d) This expression can also be derived as follows. The total energy passing through a sphere of radius r is $$u \times c \times 4\pi r^2$$ and this is equal to the total luminosity, L. Hence $$u \times c \times 4\pi r^2 = L \Rightarrow u = \frac{L}{4\pi c r^2}$$ (e) For $$L = 3.83 \times 10^{26} \text{ W}$$ and $r = 1.50 \times 10^{11} \text{ m}$ $$u = 4.5 \times 10^{-6} \text{ J m}^{-3} = 2.8 \times 10^{13} \text{ eV m}^{-3}$$